```
HP Forums / HP Calculators (and very old HP Computers) / General Forum v / [VA] SRC #013 - Pi Day 2023
Special
```


Valentin Albillo 8

Senior Member

Posts: 958
Joined: Feb 2015
Warning Level: 0\%
[VA] SRC \#013 - Pi Day 2023 Special

Hi, all,

Just in case you hadn't noticed, today it's March, 14 aka π Day, so
Happy Pi Day 2023 and Welcome to my SRC \#13-Pi Day 2023 Special

This SRC \#13 is intended to commemorate once more this most ubiquitous constant, π. There are many other threads about Pi Day 2023 but this one is mine. After posting a number of threads over the years about π Day, such as these,

```
SRC #010 - Pi Day }2022\mathrm{ Special
SRC #009 - Pi Day 2021 Special
SRC #006 - Pi Day 2020 Special: A New Fast Way to Compute Pi
```

it would seem problematic to find new, intriguing appearances of the little critter but far from it, π is well-nigh inexhaustible and to prove the point let me introduce a couple' additional appearances for your enjoyment, which will appear one after another so that you can focus on just one at a time. Let's begin with \#1 ...

Note: No hard rules so no need for a parallel thread, post here whatever you want as long as it's on topic and NO CODE PANELS, but I'd appreciate it if you'd use vintage HP calcs (physical/virtual), otherwise I'll consider you to have failed the challenge whatever your results/timings.

1. Let's count ...

π 's value can be obtained by evaluating a plethora of transcendental functions, infinite summations and products, definite integrals, stochastic processes, etc., but if you don't remember any of them you can still get a nice approximation to the value of π (exact as \boldsymbol{N} goes to infinity) by following these simple steps:

1. Choose a positive integer \boldsymbol{N}
2. Tally up how many integers in the range $\mathbf{1} \ldots \boldsymbol{N}$ have no repeated prime factors
3. Output $\sqrt{\frac{6 N}{\text { Count }}}$

For example, for $\boldsymbol{N}=\mathbf{1 0}$ we find that the seven integers $\mathbf{1 , 2 , 3 , 5 , 6 , 7}$ and $\mathbf{1 0}$ have no repeated prime factors, so Count $=\mathbf{7}$ and you get ~ 2.9277 as an approximation to π (err $\sim 6.8 \%$).

Now write your very own program and try $\boldsymbol{N}=\mathbf{1 2 , 3 4 5}, \mathbf{1 0 0}, \mathbf{0 0 0}, \mathbf{5 6 7 , 8 9 0}$ and $\mathbf{1 , 0 0 0 , 0 0 0}$ to see if you get the following results, which I obtained using this little witty 4-line (217-byte) HP-71B program I wrote for the occasion (uses Math and JPC ROMs; 179 bytes without USING "image"):

```
DESTROY ALL @ INPUT T @ SETTTIME O @ ...
...
DISP USING "2(3DC3DC3DC3D,2X),2(Z.8D,X),5DZ.2D";T,S,SQR(6*T/S),ABS (PI-RES),TIME
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline N & Count & \(\pi\) approx & |Error | & \[
\begin{aligned}
& \text { go } 71 b \\
& \text { @128x }
\end{aligned}
\] & \[
\begin{gathered}
\text { Emu } 71 / \text { Win } \\
\text { @976x }
\end{gathered}
\] & \[
\begin{gathered}
\text { Physical } \\
H P-71 B
\end{gathered}
\] \\
\hline 12,345 & 7,503 & 3.14198205 & 0.00038939 & 0.10 " & 0.01" & 13" \\
\hline 100,000 & 60,794 & 3.14155933 & 0.00003333 & \(0.28{ }^{\prime \prime}\) & 0.04" & 36" \\
\hline 567,890 & 345,237 & 3.14158684 & 0.00000582 & 0.69 " & 0.09" & 1' 28" \\
\hline 1,000,000 & 607,926 & 3.14159550 & 0.00000285 & 0.93" & 0.12" & 1' 59" \\
\hline
\end{tabular}
```

However, as the procedure is so simple, the difficulty here lies not so much in the programming as in the efficiency, thus the challenge consists mainly in achieving correct results in times as good or better than the ones given above, using exclusively vintage HP calcs, physical or virtual (indicate emulation's speed and timings for the virtual/physical calcs and try to avoid prematurely spoiling it all for other people.)

Well, see if you can deliver and, if feeling venturous and your calc is up to it, post also the results and timings for $\boldsymbol{N}=\mathbf{1 0}$ million, $\mathbf{2 5}$ million and $\mathbf{3 3}$ million (which gives an approximation to π correct to $\mathbf{8}$ digits.)

If I see interest, I'll post my original solution \& comments in a few days and part \#2 next April, 1st.
That's all. Any and all constructive and on-topic comments will be most welcome and appreciated.
v.

Edit: some errors corrected.

2old2randr 8

Posts: 42
Junior Member
Joined: Jan 2018
RE: [VA] SRC \#013 - Pi Day 2023 Special
Hi Valentin,
Edit: I have corrected the formatting (thanks, Valentin for the explanation) and added a column for run times using the (much faster) Sys RPL version of the Möbius function written by Gerald H. This is more than twice as fast as the HP-71B times you have listed.

I attempted this because it is simpler than your usual problems and you were complaining about the lack of RPL solutions for your last challenge \because) Using a brute force solution on a physical HP 50g, I get decent run times (13' 20' for 33 million [5' 21" for the Sys RPL version]) as shown below. Although I am not sure if the 50 g qualifies as a vintage calculator, of course.

| | | Runtime (seconds) | |
| ---: | ---: | :--- | :--- | :--- |
| Number | Count Approximation User RPL Sys RPL | | |

10	7	2.92770021885	0.44	0.29
12,345	7,503	3.14198204634	15.52	6.02
100,000	60,794	3.14155932716	45.08	16.93
567,890	345,237	3.14158683822	110.40	40.39
$1,000,000$	607,926	3.14159550063	147.82	54.99
$10,000,000$	$6,079,291$	3.14158749068	469.88	139.11
$25,000,000$	$15,198,180$	3.14159239999	692.35	277.43
$33,000,000$	$20,061,593$	3.14159276017	800.43	321.11
$100,000,000$	$60,792,694$	3.14159307180	n / a	448.08
$1,000,000,000$	$607,927,124$	3.14159259637	n / a	1453.24

I used the equation $S(n)=S u m(i$ from 1 to $\operatorname{sqrt}(n) ; m u(i) * i n t(n / i * i)$) to get the count of square free numbers less than or equal to ' n '. In the equation, $m u$ is the Möbius function.

The code (VA is the problem solution, MOB is the Möbius function):
VA
$\ll n$
« 0. 1. n V IP
FOR i
i MOB n i SQ / IP * +
NEXT
DUP 6. n * SWAP / V
»
"

MOB (User RPL version)
« $R \rightarrow I$
IF DUP 1 > THEN
FACTOR
IF DUP TYPE 9. SAME THEN
DUP \rightarrow STR
IF "^" POS THEN
DROP 0
ELSE
SIZE 1. + 2. / 1 SWAP 2. MOD \{ NEG \} IFT
END
ELSE
DROP -1
END
END
»

MOB (System RPL version)
: :
CK1\&Dispatch
\# FF
: :
ROTDROPSWAP
\%1
EQUALcase
FPTR2 ^RNEGext
FPTR2 ^DROPZ0
\}
1LAMBIND
: :
FPTR2 ^ZAbs
FPTR2 ^DupQIsZero?
caseSIZEERR
FPTR2 ^DupZIsOne?
?SEMI
FPTR2 ^MZSQFF
\#2/
ZINT 1
SWAP
ZERO_DO
1GETLAM
COMPEVAL
LOOP
;
ABND

John Keith 8

Posts: 883
Senior Member
Joined: Dec 2013

RE: [VA] SRC \#013 - Pi Day 2023 Special

In case you are not aware of it, our fellow member Gerald H wrote a very fast version of MOB which is in this thread.

I'm not sure whether external programs are allowed in these challenges but I do recall several HP-71 programs using LEX files, so I would think that they are fair game for other HP's as well.
\square EMAIL PM P, FIND RUOTE RTREPORT

16th March, 2023, 21:49

Post: \#4

Valentin Albillo 8

Senior Member

Posts: 958
Joined: Feb 2015
Warning Level: 0\%

RE: [VA] SRC \#013 - Pi Day 2023 Special

Hi, John,

John Keith Wrote:

(16th March, 2023 21:23)
I'm not sure whether external programs are allowed in these challenges but I do recall several HP-71 programs using LEX files, so I would think that they are fair game for other HP's as well.

Absolutely. There are no rules other than no code panels, and using vintage HP models (such as the HP 50g) is highly encouraged (but not mandatory,) after all this is the Museum of HP Calculators .

In short, external programs/libraries/LEX files/binaries/etc. are allowed and welcome.

Thanks for your interest and Regards.

v.

P PM WWW Q FIND \quad EDIT X QUOTE R REPORT
17th March, 2023, 15:08

vaklaff B

Posts: 110
Member
Joined: Dec 2019

RE: [VA] SRC \#013 - Pi Day 2023 Special

I'm not really contributing, I just want to say a public thank-you to Valentin from me and my wife. This topic was completely new to us. She (high school teacher of mathematics and programming) and her students had great fun playing with the approximation!

Posts: 790
Joined: Dec 2013

RE: [VA] SRC \#013 - Pi Day 2023 Special

My initial attempt was, instead of counting the square-free numbers, to count the numbers that have a square prime factor, and to subtract this amount from N .
The count of numbers $<=N$ having the $2^{\wedge} 2$ factor is $\operatorname{IP}\left(N / 2^{\wedge} 2\right)$, those having the factor $3^{\wedge} 2$ is $\operatorname{IP}\left(N / 3^{\wedge} 2\right)$, and so on, so the count of square-free numbers should be $S=N-\operatorname{IP}\left(N / \wedge^{\wedge} 2\right)-\operatorname{IP}\left(N / 3^{\wedge} 2\right)-\operatorname{IP}\left(N / 5^{\wedge} 2\right) \ldots$
In that way, I only had to explore primes up to $\operatorname{SQR}(\mathrm{N})$, so it was pretty fast.
Unfortunately, numbers that are multiple of several square primes such as $(2 * 3)^{\wedge} 2$ are counted several times, and the result is underestimated:

```
20 N=12345 ! test case
```

```
30 S=N @ P=1
40 P=FPRIM(P+1) @ S=S-IP(N/P^2) @ IF P<SQR(N) THEN 40
50 DISP N;S
>RUN
12345 6793 (true result=7503)
```

I didn't find a way to easily manage the numbers with multiple square prime factors.
An improvement was to use the current sum S instead of $N: S=N ; S=S-I P\left(S / \wedge^{\wedge} 2\right) ; S=S-I P\left(S / 3^{\wedge} 2\right) \ldots$ but it's still an approximation at most:

```
4 0 ~ P = F P R I M ( P + 1 ) ~ @ ~ S = S - I P ( S / P ` 2 ) ~ @ ~ I F ~ P < S Q R ( N ) ~ T H E N ~ 4 0 ~
>RUN
123457529 (true result=7503)
```

So, I resorted to the formula using the Möbius function as disclosed in the post \#2 above.
Matter of fact, this formula starts with the same terms as my first attempt:
$S=N-\operatorname{IP}\left(N / 2^{\wedge} 2\right)-\operatorname{IP}\left(N / 3^{\wedge} 2\right)-\operatorname{IP}\left(N / 5^{\wedge} 2\right) \ldots$
but "magically" manages the numbers with multiple square prime factors with terms such as $+\operatorname{IP}(N /(2 * 3) \wedge 2)$!
Here is my implementation, (correct) results and timings on my Emu71/DOSBox, at about 150x speed:

```
10 ! SRC13
20 INPUT N
25 T=TIME
30S=N @ FOR I=2 TO SQR(N) @ S=S+FNM(I)*IP(N/I^2) @ NEXT I
4 0 ~ T = T I M E - T ~
5 0 ~ D I S P ~ N ; S ; T ~
80 !
90 DEF FNM(N) ! Moebius function
110 C=-1 @ Q=1
120 P=PRIM(N) @ IF P=0 THEN P=N
130 IF P=Q THEN FNM=0 @ END
140 IF P<N THEN C=-C @ N=N/P @ Q=P @ GOTO 120
150 FNM=C @ END DEF
>RUN
12345 7503 . 23
10000 60794.65
567890 345237 1.37
1000000 607926 1.8
```

However, I'm not fully satisfied by applying a formula without understanding how and why it works.
Now, I'm curious to read Valentin's solution and explanations !

J-F

2old2randr 8

Posts: 42
Joined: Jan 2018

I didn't find a way to easily manage the numbers with multiple square prime factors.

I was trying the same approach using the inclusion-exclusion principle, i.e., that the true count would be given by:

```
count = n/2^2 + n/3^2 + n/5^^2 + ...
-n/(2^2* 3^2) - n/(2^2* 5^2) - n (3^2* 5^2) - ...
+ n/(2^2* 3^2* 5^2) + ...
or (rearranging)
```


This involves generating all combinations of the squares of the primes but what makes it feasible is that the terms rapidly go to zero since the product of squares grows so rapidly and the search tree can be pruned whenever the product of the
squares is greater than the input number. In fact, I do have an implementation that computes the count in a couple of seconds for 1 e6 (if given a list of primes up to 1000) on a physical HP 50 g . Unfortunately, there is bug in my backtracking process after pruning that I have not been able to resolve and the program does not generate the correct count after $1763\left(1764=2^{\wedge} 2^{*} 3^{\wedge} 2^{*} 7^{\wedge} 2\right.$ is the first number where the backtracking is needed).

Sudhir

Posts: 958
Joined: Feb 2015

Warning Level: 0\%

RE: [VA] SRC \#013 - Pi Day 2023 Special
Hi, 2old2randr, vaklaff and J-F Garnier,

2old2randr Wrote:

(16th March, 2023 12:16)
[Sorry the tables and code have messed up formatting - I couldn't figure out how to get that right without using code blocks.

Here's how: specifying font 'Courier' and replacing spaces by the non-breaking character " ", like this:

Number	Count	Approximation Runtime (Seconds)		
10	7	2.92770021885	0.44	
12,345	7,503	3.14198204634	15.52	
100,000	60,794	3.14155932716	45.08	
567,890	345,237	3.14158683822	110.40	
$1,000,000$	607,926	3.14159550063	147.82	
$10,000,000$	$6,079,291$	3.14158749068	469.88	
$25,000,000$	$15,198,180$	3.14159239999	692.35	
$33,000,000$	$20,061,593$	3.14159276017	800.43	

2old2randr Wrote:

I attempted this because it is simpler than your usual problems and you were complaining about the lack of RPL solutions for your last challenge

Certainly. Glad to see some brave $R P L$-user actually using his vintage $R P L$ calc to solve my challenge. Much appreciated.

2old2randr Wrote:

Using a brute force solution on a physical HP 50g, I get decent run times (max. of $13^{\prime} 20^{\prime \prime}$) as shown below. Although I am not sure if the $\mathbf{5 0 g}$ qualifies as a vintage calculator, of course.

As for your second statement, yes, the HP 50g fully qualifies as a vintage HP calculator, thus no problem. And BTW, all your results are correct.

vaklaff Wrote:

I'm not really contributing, I just want to say a public thank-you to Valentin from me and my wife. This topic was completely new to us. She (high school teacher of mathematics and programming) and her students had great fun playing with the approximation!

Of course you're contributing! In particular, to boost my morale, which helps me keep on creating and posting these challenges. Much appreciated, and glad to know that you and your wife (and her students !) enjoyed the topic and learned something new. Please give my best regards to your charming wife.

J-F Garnier Wrote:

Here is my implementation, (correct) results and timings on my Emu71/DOSBox, at about 150x speed:[...]
physical HP-71B, for comparison purposes. Also, try and include the results/timings for $\boldsymbol{N}=1 \mathbf{1 0} 25$ and $\mathbf{3 3}$ million, if you can.

J-F Garnier Wrote:

However, I'm not fully satisfied by applying a formula without understanding how and why it works. Now, I'm curious to read Valentin's solution and explanations!

However, in this post of yours in my recent SRC \#012e - Then and Now: Roots thread, you did use Bornemann's formula, about which you posted, I quote:

"I didn't fully understand the underlying math, but was able to decipher the formula and translate it into 71B code".

Same here, right ? ${ }^{\circ}$
As for reading my solution and explanations, I'll provide both but you know well that I don't usually give formal proofs, references or lengthy math lectures, so keep your expectations accordingly, Ok ?

I'll post my solution (actually two of them, optimized for different purposes) either next Sunday or Monday, around 10 PM $G M T+1$. Thanks to all of you for your interest and contributions.

Best regards.
V.

RE: [VA] SRC \#013 - Pi Day 2023 Special

I could only find a recursive implementation for the inclusion/exclusion method but this turns out to be much slower than the earlier brute force solution (even given the list of primes a priori). Just for giggles, here are the run times for the first two numbers using this approach - I did not bother running for the others.

The code - in case someone wants to try converting it to an iterative solution which should be much faster.
$<\rightarrow$ number
«primes 2. ^ DUP SIZE $0 \rightarrow$ squares nsquares count
$\lll \rightarrow$ prefix startpos add?
< IF prefix number \leq THEN startpos nsquares FOR i IF squares i GET number > THEN nsquares 1 + 'i' STO @ exit loop ELSE prefix squares i GET * DUP IF number > THEN DROP ELSE

DUP number SWAP / IP
IF add? THEN count + ELSE count SWAP - END 'count' STO
i 1 + add? NOT combinations EVAL END END NEXT END

》
\gg combinations
< 111 combinations EVAL number count - DUP number 6 * SWAP / $\sqrt{ }$
»
»

Posts: 790
Joined: Dec 2013

RE: [VA] SRC \#013 - Pi Day 2023 Special
Valentin Albillo Wrote:
(19th March, 2023 01:37)

J-F Garnier Wrote:

However, I'm not fully satisfied by applying a formula without understanding how and why it works.
However, in this post of yours in my recent SRC \#012e - Then and Now: Roots thread, you did use Bornemann's formula
[..]
Same here, right ? \quad

Understood!

Quote:

Please post your best estimates for the runtimes when using a physical HP-71B, for comparison purposes. Also, try and include the results/timings for $\boldsymbol{N}=\mathbf{1 0}, \mathbf{2 5}$ and $\mathbf{3 3}$ million, if you can.

Certainly.
Below are the timings for a HP-71B 1BBBB (636kHz), a HP-71B 2CDCC (650kHz) and Emu71/Win in Authentic Speed, respectively.
The speed of HP-71B can easily vary by 5 to 10% due to component tolerance and battery condition.
The 71B clock can be checked with the SYSTEM("CLOCK") command provided in the SYSTEMFN LEX or in my ULIB52 collection.
On the other hand, Emu71/Win in Authentic Calculator Speed mode gives reproducible timings (provided the system is not heavily loaded).

N Count Timings (71B/1B, 71B/2C, Emu71/Auth.)
123457503 26s/23s/24s
10000060794 78s/70s/73s
567890345237 194s/174s/182s
1000000607926 260s/233s/244s

So your implementation seems to be about $2 x$ faster than mine. I see some ways to gain maybe 25%, but not much more. Interesting.

More results on Emu71/Win only:
N Count PI approx. Timings (fast/auth.)
10E6 $60792913.141587490680 .8 \mathrm{~s} / 813 \mathrm{~s}$
25E6 151981803.14159239999 1.2s/1308s
33E6 200615933.14159276017 1.4s/1511s

J-F

2old2randr 8

Posts: 42
Junior Member
Joined: Jan 2018

RE: [VA] SRC \#013 - Pi Day 2023 Special

I have updated the run times in my original post using the Sys RPL version of the Möbius function written by Gerald H (thanks, John Keith). This turns out to be twice as fast as the times obtained on the physical HP-71B.

Sudhir

RE: [VA] SRC \#013 - Pi Day 2023 Special

Hi, J-F and 2old2randr,

J-F Garnier Wrote:

I Wrote:

[...] Same here, right ?

Understood!

Good.

J-F Garnier Wrote:

Certainly.
Below are the timings for a HP-71B 1BBBB (636 kHz), a HP-71B 2CDCC (650 kHz) and Emu71/Win in Authentic Speed, respectively. [...] Emu71/Win in Authentic Calculator Speed mode gives reproducible timings [...] So your implementation seems to be about $2 x$ faster than mine. I see some ways to gain maybe 25%, but not much more. Interesting.

More results on Emu71/Win only:
N Count PI approx. Timings (fast/auth.)
10E6 $60792913.141587490680 .8 \mathrm{~s} / 813 \mathrm{~s}$
25E6 151981803.14159239999 1.2s/1308s
33E6 200615933.14159276017 1.4s/1511s

Very good, thanks. In reciprocity, here are more of my results for you, obtained with my original Solution 1 (my original Solution 2 is slower):

N	Count	π approx	\|Error	$\begin{aligned} & \text { go } 71 b \\ & \text { @128x } \end{aligned}$	$\begin{gathered} \text { Emu } 71 / \text { Win } \\ \text { ©976x } \end{gathered}$	$\begin{gathered} \text { Physical } \\ H P-71 B \end{gathered}$
10,000,000	6,079,291	3.14158749	0.00000516	$3.03 "$	0.40 "	6' 28"
25,000,000	15,198,180	3.14159240	0.00000025	4.87"	0.64 "	10' 23 "
33,000,000	20,061,593	3.14159276	0.00000011	5.61 "	0.74 "	11' 58"
1E8	60,792,694	3.14159307	0.00000042	9.93"	1.30"	21' 11"
1E9	607,927,124	3.14159260	0.00000006	32.45"	4.26 "	69 ' 14"

It would seem that my results for Emu71/Win @ $976 x$ are $\sim \mathbf{2 x}$ faster than yours but please provide the speed factor (976 in mine) for comparison purposes. Also and for the same reason, please provide your timings for $\boldsymbol{N}=10^{\boldsymbol{8}}$ and 10^{9}, if at all possible.

2old2randr Wrote:

I have updated the run times in my original post using the Sys RPL version of the Möbius function written by Gerald H (thanks, John Keith). This turns out to be twice as fast as the times obtained on the physical HP-71B.

Thanks but unless I'm mistaken (I don't know the first word about RPL, let alone Sys RPL) you didn't include the Sys RPL code in your edited post and I think you should, lest the posted code and timings aren't synchronized with one another.

Also, as I told J-F above, please provide your timings for $\boldsymbol{N}=\mathbf{1 0}^{\boldsymbol{8}}$ and $\mathbf{1 0}^{\boldsymbol{9}}$, if at all possible.
Best regards.
V.

Valentin Albillo Wrote:

In reciprocity, here are more of my results for you, obtained with my original Solution 1 (my original Solution 2 is slower):

N	Count	π approx	\|Error	$\begin{aligned} & \text { go } 71 b \\ & \text { @128x } \end{aligned}$	$\begin{gathered} \text { Emu71/Win } \\ \text { @976x } \end{gathered}$	$\begin{gathered} \text { Physical } \\ H P-71 B \end{gathered}$
10,000,000	6,079,291	3.14158749	0.00000516	3.03"	0.40 "	6' 28"
25,000,000	15,198,180	3.14159240	0.00000025	4.87"	$0.64 "$	10' 23"
33,000,000	20,061,593	3.14159276	0.00000011	5.61"	$0.74{ }^{\prime \prime}$	11' 58"
1E8	60,792,694	3.14159307	0.00000042	9.93"	1.30"	21' 11"
1E9	607,927,124	3.14159260	0.00000006	$32.45{ }^{\prime \prime}$	$4.26 "$	$69^{\prime \prime} 14$ "

It would seem that my results for Emu71/Win @ 976x are ~ $\mathbf{2 x}$ faster than yours but please provide the speed factor (976 x in mine) for comparison purposes. Also and for the same reason, please provide your timings for $\boldsymbol{N}=10^{\boldsymbol{8}}$ and 10^{9}, if at all possible.

Estimating the speed ratio of Emu71/Win on modern platforms is a subject by itself, but I estimate a peak ratio of ~1500x on my latest Ryzen5 laptop.

Quote:

please provide your timings for $\boldsymbol{N}=\mathbf{1 0} \mathbf{0}^{\boldsymbol{8}}$ and $\mathbf{1 0}^{\mathbf{9}}$, if at all possible.

Execution timings on the physical HP-71B are estimated in Emu71/Win Authentic mode.

N	Count	PI approx. Timings (fast, auth.)	
lE8	60792694	$3.141593 \underline{07180}$	2.2 s 46 min
1E9	607927124	$3.141592 \underline{\underline{9637}}$	7.3 s 2 h 32 min
1E10	6079270942	$3.141592 \underline{\underline{7337}}$	24 s N/A
1E11	60792710280	$3.14159265 \underline{115}$	81 s N/A
1E12	607927102274	$3.14159265 \underline{250}$	276 s N/A

J-F

J-F Garnier 8

Senior Member

Posts: 790
Joined: Dec 2013

RE: [VA] SRC \#013 - Pi Day 2023 Special

Valentin Albillo Wrote:

(20th March, 2023 04:22)
It would seem that my results for Emu71/Win @ 976x are ~ 2x faster than yours...

Since Valentin didn't post his solutions yet, here is my optimized code for speed.
It is much less readable than my first version, but still not as obscure as SysRPL :-)

```
10 ! SRC13 verC
20 INPUT N
50 T=TIME @ M=SQR(N) @ S=N-IP(N/4)-IP(N/9)
6 0 ~ F O R ~ I = 4 ~ T O ~ M ~ @ ~ G O S U B ~ 1 1 0 ~ @ ~ G O S U B ~ 1 1 0 ~ @ ~ G O S U B ~ 1 1 0 ~ @ ~ N E X T ~ I ~
80 T=TIME-T @ DISP N;S;SQR(6*N/S);T
90 END
100 !
110 I=I+1 @ R=I @ C=-1 @ Q=1
120 P=PRIM(R) @ IF P=Q THEN RETURN ELSE IF P THEN C=-C @ R=R/P @ Q=P @ GOTO 120
130 IF R=Q THEN RETURN ELSE S=S+C*IP(N/(I*I)) @ RETURN
```

Execution times are now close to Valentin's results:

```
N Count Timings (HP-71B)
    12345 7503 11s
    100000 60794 35s
    567890 345237 90s
1000000 607926 122s
```


More results:

```
N Count PI approx. Timings (Emu71 fast, auth.)
1E7 6079291 3.14158749068 0.4s 6min59s
1E8 60792694 3.14159307180 1.3s 24min
1E9 607927124 3.14159259637 4.1s 81min
1E10 6079270942 3.14159267337 14s N/A
1E11 60792710280 3.14159265115 48s N/A
1E12 607927102274 3.14159265250 172s N/A
J-F
```


Valentin Albillo 8

Posts: 958
Senior Member
Joined: Feb 2015
Warning Level: 0\%

RE: [VA] SRC \#013 - Pi Day 2023 Special

Hi, all,
About a week has elapsed since I posted this π Day 2023 Special challenge, thank you very much to those few of you who contributed your valuable solutions and/or comments, namely 2old2randr, J-F Garnier, vaklaff and John Keith, really much appreciated.

On the one hand, it's a pity that it failed to attract the attention of other people usually interested in my productions but that's life. On the other hand, this time I got RPL (and even Sys RPL!) solutions, which were conspicuously absent from past challenges.

Now's the time for my detailed sleuthing process and resulting original solutions, plus additional comments:

My sleuthing process

First of all, if naively taking at face value the problem's statement, you'd might be tempted to just program a simple loop from 1 to \boldsymbol{N}, compute the factorization for each number and tally up the ones which have repeated factors. This is as simple as it gets but for large \boldsymbol{N} (say 1 million) it's grossly inefficient and here we're most interested in raw speed.

What to do ? Search in references or the Internet for a better algorithm, that's what, in particular one which is better than $\boldsymbol{O}(\mathbf{N})$, as any such loop will take ages for large \boldsymbol{N}, even if nothing were done inside the loop. We need something which is at least $\mathbf{O}(\sqrt{ } \mathbf{N})$, thus transforming a $1,000,000$-cycle loop into a 1,000 -cycle one.

To search for that, we notice that asking for numbers whose factorization has no repeated prime factors is tantamount to asking for numbers who aren't divisible by any square other than 1 , which are usually called square-free integers, and a quick Google search for the term reveals many relevant links, among them one at Wolfram Research's Math World, where we find a formula with the required order (i.e. the upper limit of the summation goes up to $\sqrt{ } \mathbf{N}$,) equivalent to this one:

$$
S(n)=\sum_{d=1}^{\lfloor\sqrt{n}\rfloor} \mu(d)\left\lfloor\frac{n}{d^{2}}\right\rfloor \quad \text { where } \mu(d) \text { is the Möbius function. }
$$

which also appears in text form as a $(n)=\operatorname{Sum}_{-}\{k=1 \ldots f l o o r(\operatorname{sqrt}(n))\} \operatorname{mu}(k) * f l o o r(n / k \wedge 2)$ at OEIS A013928 Number of (positive) squarefree numbers < n, and many other sites and documents. The simple proof of this formula can be obtained using the inclusion-exclusion principle.

As for the Möbius function, it's a very important number-theoretical function which is easily computed in various ways, like this simple HP-71B user-defined function FNM (which should be placed at the end of any program using it):

```
DEF FNM(N) @ IF N=1 THEN FNM=1 @ END ELSE F=1
D=PRIM(N) @ IF NOT D THEN FNM=(-1)^F ELSE IF MOD(N,D*D) THEN F=F+1 @ N=N/D @ GOTO 2
>FOR N=96673 TO 96686 @ FNM(N); @ NEXT N @@ - 1 1 0 0 0 0 0 0 1 1 1 0 -1 -1
>S=0 @ FOR N=1 TO 1109 @ S=S+FNM(N) @ NEXT N @ S > -15 {Mertens(1109) }
```

but the important thing here is that we only need $\sqrt{ } \mathbf{N}$ evaluations of it instead of \boldsymbol{N}, which makes all the difference in the world.

My original solutions

Yes, solutions, plural, as I created two of them, optimized for different cases. My first solution is optimized for speed, regardless of memory use, and uses the $\boldsymbol{S}(\boldsymbol{n})$ formula above, but instead of computing each individual value for the Möbius function inside the loop, it does compute all $\sqrt{\mathbf{N}}$ values en masse before starting the summation loop, which can be done without factoring, multiplications or divisions by using a trivial sieve procedure similar to the well-known ancient Sieve of Eratosthenes algorithm used to find all prime numbers up to a limit.

The sieve procedure used here runs fast, ultimately winning over for large \boldsymbol{N}, and all needed values of Möbius(n) are left stored in an array to be later used inside the summation loop.

First solution: speed

This little 4-line, 217-byte HP-71B program implements the procedure, first sieving and storing in INTEGER array \boldsymbol{M} al $\sqrt{ } \mathbf{N}$ Möbius values needed, then computing the summation and outputting results and timings: (uses Math and JPC ROMs)

1 DESTROY ALL @ INPUT T @ SETTIME 0 @ $N=S Q R(T) @$ INTEGER M(N) @ MAT M=CON @ P=2 @ WHILE P $<=N$
2 S=P*P @ FOR K=S TO N STEP S @ M(K)=O @ NEXT K @ FOR K=P TO N STEP P @ M(K)=-M(K) @ NEXT K
3 P=FPRIM(P+1) @ END WHILE @ S=T @ FOR K=2 TO N @ S=S+M(K)*(T DIV (K*K)) @ NEXT K
4 DISP USING "2(3DC3DC3DC3D,2X),2(Z.8D,X),5DZ.2D";T,S,SQR(6*T/S),ABS (PI-RES),TIME

N	Count	π approx	\|Error	$\begin{aligned} & \text { go71b } \\ & \text { @128x } \end{aligned}$	$\begin{gathered} \text { Emu } 71 / \text { Win } \\ \text { @976x } \end{gathered}$	$\begin{gathered} \text { Physical } \\ H P-71 B \end{gathered}$
12,345	7,503	3.14198205	0.00038939	0.10 "	0.01 "	13"
100,000	60,794	3.14155933	0.00003333	0.28 "	0.04"	36"
567,890	345,237	3.14158684	0.00000582	0.69 "	0.09"	1' 28"
1,000,000	607,926	3.14159550	0.00000285	0.93 "	0.12"	1' 59"
10,000,000	6,079,291	3.14158749	0.00000516	3.03"	$0.40 "$	6' 28"
25,000,000	15,198,180	3.14159240	0.00000025	4.87 "	0.64 "	10' 23"
33,000,000	20,061,593	3.14159276	0.00000011	5.61 "	0.74 "	11' 58"
1E8	60,792,694	3.14159307	0.00000042	9.93"	1.30"	21' 11"
1E9	607,927,124	3.14159260	0.00000006	$32.45{ }^{\prime \prime}$	4.26 "	69 ' 14"

The caveat is, storing all Möbius values in INTEGER array \boldsymbol{M} does require large amounts of memory if \boldsymbol{N} is huge, e.g.:

- For $\boldsymbol{N}=1 E 8$, the program uses $\sim 30,055$ bytes of $R A M$ (\boldsymbol{M} has 10,000 elements, 30,000 bytes)
- For $\boldsymbol{N}=1 E 9$, the program uses $\sim 94,927$ bytes of $R A M$ (\boldsymbol{M} has 31,623 elements, 94,869 bytes)

Larger values of \boldsymbol{N} are problematic, e.g. $\boldsymbol{N}=1 E 10$ would require in excess of 300 Kb of $R A M$, at the very limit of what the HP-71B can manage, which leads us to my second solution, where I'll turn from computing all Möbius values en masse to computing them individually, thus avoiding the large memory requirements, albeit at the cost of speed.

Second solution: memory

This even smaller 3-line, 178-byte HP-71B program uses in-lined Möbius function code (as oposed to an user-defined function) for speed, and needs only ~ 63 bytes of $R A M$ to run no matter the size of \boldsymbol{N}, all the way to a trillion (10 ${ }^{12}$) 1 , i.e. 999,999,999,999, which is the largest integer the HP-71B can represent: (uses JPC ROM)

1 DESTROY ALL @ INPUT T @ SETTIME O @ U=-1 @ S=T @ FOR K=2 TO SQR(T) @ N=K @ F=1
2 D=PRIM(N) @ IF NOT D THEN S=S+U^F*IP(T/(K*K)) ELSE IF MOD (N,D*D) THEN F=F+1 @ N=N/D @ GOTO 2 3 NEXT K @ DISP USING "2(3DC3DC3DC3D,2X),2(Z.8D,X),5DZ.2D";T,S,SQR(6*T/S),ABS (PI-RES),TIME

N	Count	π approx	\|Error	$\begin{aligned} & \text { go71b } \\ & \text { @128x } \end{aligned}$	$\begin{gathered} \text { Emu } 71 / \text { Win } \\ \text { @976x } \end{gathered}$	$\begin{gathered} \text { Physical } \\ H P-71 B \end{gathered}$
12,345	7,503	3.14198205	0.00038939	0.09"	0.01 "	12"
100,000	60,794	3.14155933	0.00003333	0.26 "	0.03"	$33^{\prime \prime}$
567,890	345,237	3.14158684	0.00000582	0.67 "	0.09"	1' 26"
1,000,000	607,926	3.14159550	0.00000285	0.91 "	0.12"	1' 56"
10,000,000	6,079,291	3.14158749	0.00000516	$3.15{ }^{\prime \prime}$	0.41 "	6' 43"
25,000,000	15,198,180	3.14159240	0.00000025	5.15"	$0.68{ }^{\prime \prime}$	10' 59"
33,000,000	20,061,593	3.14159276	0.00000011	5.98"	$0.78{ }^{\prime \prime}$	12' 45"
1E8	60,792,694	3.14159307	0.00000042	10.81 "	1.42"	23' 4"
1E9	607,927,124	3.14159260	0.00000006	36.93"	4.84"	78' 47"

1 E 10	$6,079,270,942$	3.14159267	0.00000002	2^{\prime}	$8^{\prime \prime}$	$16.82^{\prime \prime}$	$4 \mathrm{~h} 33^{\prime}$	
1 E 11	$60,792,710,280$	3.14159265	0.00000000^{\prime}	7^{\prime}	$37^{\prime \prime}$	$59.95^{\prime \prime}$	16 h	15^{\prime}
$1 \mathrm{E} 12-1$	$607,927,102,274$	3.14159265	$0.0000000 *^{\prime}$	28^{\prime}	$9^{\prime \prime}$	3^{\prime}	$41^{\prime \prime}$	60 h
22^{\prime}								

* the 12-digit values are $3.14159265115,0.00000000244$ and $3.14159265250,0.00000000109$, respectively.

Thus, although this second solution can achieve the maximum possible integer range $\mathbf{1} . .1 \mathbf{1 0}^{\mathbf{1 2}} \mathbf{- 1}$ with no memory problems and even seems to be a little faster for \boldsymbol{N} up to 1 million, this is only because the HP-71B hardware and BASIC language are optimized for fast mathematical operations performed entirely in assembler without user loops or branching, which are pretty slow and thus slow down the sieving procedure.

This is why a matrix inversion (MAT INV) or a Fast Fourier Transform (FOUR) are performed at speeds competing with much faster CPUs, while an empty FOR-NEXT construct does only $\sim 100 \mathrm{loops} / \mathrm{sec}$. on a physical $H P-71 B$. Even so, the second solution will get increasingly slower than the first one for large \boldsymbol{N}.

Additional Comments

- In the very distant past (2004), I posted the pair of threads:

HP Challenge VA114 - The Turtle (HP-71B) and the Hare (HP49G+)
HP Challenge VA115 - The 71B Turtle and 49Gp Hare Harder 2nd Half
where I pitted the HP-71B vs. the HP49G+, executing various quite hard computations, and the resulting times showed that the HP49G+ was usually about 4.6x to $\mathbf{6 . 4 x}$ faster than the HP-71B, so any timings must take this into account in order to ascertain the relative performance of the various solutions running on different hardware.

- You may be wondering why I selected $\boldsymbol{N}=\mathbf{3 3 , 0 0 0}, \mathbf{0 0 0}$ as a test case. It's an innocuous number in and of itself but I found it while reading this truly excellent book eons ago:

The Mathematical Experience by Phillip J. Davis and Reuben Hersh
(464 pages, ISBN-10: 9780395929681)
where they say:
"A more refined piece of natural scientific research into prime Numbers was reported in a paper by I. J. Good and R. F. Churchhouse in 1967 [...]"
and they elaborate in page 367, I quote:
"To check their probabilistic reasoning, Good and Churchhouse did some numerical work. [...] In a separate calculation, they found that the total number of zeros of $\mu(n)$ [VA: the Möbius function] for n between 0 and $33,000,000$ is $12,938,407$.

The "expected number" is 33.000.000*(1-6/ π^{2}). which works out to $12,938.405 .6$. They call this "an astonishingly close fit, better than we deserved. " A nonrigorous argument has predicted a mathematical result to 8 place accuracy. In physics or chemistry. experimental agreement with theory to 8 place accuracy would be regarded as a very strong confirmation of the theory. Here, also, it is impossible to believe that such agreement is accidental. The principle by which the calculation was made must be right. "

I was sure it took them considerable time to get the tally for 33,000,000 using some 1967-era computer and wanted to know how long it would take a 1984-era handheld HP-71B to get the result, which is less than 12 min . for a physical machine and less than a second for a modern emulation (Emu71/Win).

Both timings would be reduced at least an order of magnitude if rewritten in assembler and run in the same hardware (perhaps J-F Garnier would obligue and create a MAT M=MOB matrix statement which would fill up array \boldsymbol{M} with the results of the sieving procedure implemented in BASIC in my first solution ... (1))

By the way, the aforementioned 1967 paper by I. J. Good and R. F. Churchhouse is:

The Riemann Hypothesis and Pseudo-random Features of the Möbius Sequence

where among other very interesting things, they say:
"Thus the Möbius sequence contains arbitrarily longruns of zeros, but these long runs presumably occur extremely rarely."

I showed above such a run of zeros from $\boldsymbol{N}=\mathbf{9 6 6 7 5}$ to $\mathbf{9 6 6 8 0}$, six consecutive zeros in all. It would make for an interesting challenge to locate longer runs.

- These are the exact counts $\mathbf{S}\left(\mathbf{1 0}^{\boldsymbol{N}}\right)$ for selected \mathbf{N} :

```
N S(10N)
--------------------------------------------
        1
        7
        61
        608
        6083
        60794
        607926
        6079291
        60792694
        607927124
        106079270942
        60792710280
        12607927102274
        136079271018294
        14 60792710185947
        6079271018540405
        607927101854022750
        607927101854026628773299
        607927101854026628663278087296
        36 607927101854026628663276779463775476
6/ }\mp@subsup{|}{}{2}=0.607927101854026628663276779258365833...
```

So you see, you only need to tally up numbers up to $\mathbf{1 0}{ }^{\mathbf{3 6}}$ with no repeated prime factors and you'll get an approximation to π correct to 27 decimal digits ! (\square)

That's all for now, I hope you enjoyed it. Regrettably, due to a number of factors (pun intended,) I'm now taking a leave of absence from further challenges for a while. Cya.

v.

Edit: rephrased one sentence.

PM WWW RIND

22nd March, 2023, 11:19
Post: \#16

EdS2 8
Senior Member

Posts: 517
Joined: Apr 2014

RE: [VA] SRC \#013 - Pi Day 2023 Special

Nice challenge Valentin, based on an interesting finding! I've posted some reflections over here.

Valentin Albillo 8

Posts: 958
Joined: Feb 2015
Warning Level: 0\%

RE: [VA] SRC \#013 - Pi Day 2023 Special

Hi, all,
Casually looking at my code for solution 1 I realized that I did overlook a small but obvious optimization, namely not trying to update the sum \mathbf{S} if the Möbius value $\boldsymbol{M}(\boldsymbol{K})$ is zero.

The slightly modified code is now 225 bytes instead of 217, and runs about 5,4\% faster:
1 DESTROY ALL @ INPUT T @ SETTIME 0 @ $N=S Q R(T)$ @ INTEGER M(N) @ MAT M=CON @ P=2 @ WHILE P $<=N$
2 S=P*P @ FOR K=S TO N STEP S @ M(K)=0 @ NEXT K @ FOR K=P TO N STEP P @ M(K)=-M(K) @ NEXT K
3 P=FPRIM(P+1) @ END WHILE @ S=T @ FOR K=2 TO N @ IF M(K) THEN S=S+M(K)* (T DIV (K*K))
4 NEXT K @ DISP USING " $2(3 \mathrm{DC} 3 \mathrm{DC3DC} 3 \mathrm{D}, 2 \mathrm{X}), 2(\mathrm{Z} .8 \mathrm{D}, \mathrm{X}), 5 \mathrm{DZ} .2 \mathrm{D} " ; \mathrm{T}, \mathrm{S}, \mathrm{SQR}(6 * \mathrm{~T} / \mathrm{S}), \mathrm{ABS}(\mathrm{PI}-\mathrm{RES}), \mathrm{TIME}$

| N | Count | π approx | \|Error| | $\begin{aligned} & \text { go } 71 \mathrm{~b} \\ & \text { a128x } \end{aligned}$ | $\begin{gathered} \text { Emu71/Win } \\ \text { @976x } \end{gathered}$ | $\begin{gathered} \text { Physical } \\ H P-71 B \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12,345 | 7,503 | 3.14198205 | 0.00038939 | 0.09" | 0.01" | 12" |
| 100,000 | 60,794 | 3.14155933 | 0.00003333 | 0.27 " | 0.04 " | 35" |
| 567,890 | 345,237 | 3.14158684 | 0.00000582 | 0.65" | 0.09" | 1' 23" |

1,000,000	607,926	3.14159550	0.00000285	0.87"	0.11"	$1{ }^{\prime}$	51"
10,000,000	6,079,291	3.14158749	0.00000516	2.86"	$0.38{ }^{\prime \prime}$	$6{ }^{\prime}$	6"
25,000,000	15,198,180	3.14159240	0.00000025	4.59"	0.60 "	$9{ }^{\prime}$	48"
33,000,000	20,061,593	3.14159276	0.00000011	5.29"	0.69 "	11 '	17"
1E8	60,792,694	3.14159307	0.00000042	9.37"	1.23"	19^{\prime}	$59 "$
1E9	607,927,124	3.14159260	0.00000006	$30.70{ }^{\prime \prime}$	4.03"	65 '	30"

V.

23rd March, 2023, 16:03 (This post was last modified: 23rd March, 2023 16:04 by EdS2.)
Post: \#18

EdS2 8

Senior Member

Posts: 517
Joined: Apr 2014

RE: [VA] SRC \#013 - Pi Day 2023 Special

BTW, the short paper The Riemann Hypothesis and Pseudorandom Features of the Möbius Sequence by Good and Churchhouse can be found here. (It's an example of a large scale pure mathematics computation, in 1967, running in the background on the Atlas at Chilton. We're not told the runtime.)

 Senior Member

Posts: 790
Joined: Dec 2013

RE: [VA] SRC \#013 - Pi Day 2023 Special

So this time we got two solutions from Valentin, plus as often interesting comments and references.
The first solution is nice and quite unexpected, but my preference goes to the second solution that has no limitation due to memory.

My last solution posted just a few hours before Valentin's final solutions probably didn't catch much attention.
Yet I was quite happy with the tricks I used to speed up my code by almost a factor of 2.
One trick was to skip the unnecessary evaluation of the Möbius function for all multiples of 4 , i.e. one number over 4 or a 25\% gain.
But this was not enough to beat Valentin's timings, and even more with his last 5% optimization of his fastest version.

So here is another attempt, pushing the optimisation further towards speed with just a slightly larger code, but no huge memory requirements.

```
! SRC13 verE
10 INPUT N
15 T=TIME @ M=(SQR(N)+3) DIV 4*4 @ S=0
20 FOR I=M TO 5 STEP -1
25 I=I-1 @ R=I @ C=-1
30 P=PRIM(R) @ IF NOT P THEN S=S+C*(N DIV (I*I)) ELSE IF MOD(R,P*P) THEN C=-C @ R=R/P @ GOTO 30
35 I=I-1 @ R=I/2 @ C=1
40 P=PRIM(R) @ IF NOT P THEN S=S+C*(N DIV (I*I)) ELSE IF MOD(R,P*P) THEN C=-C @ R=R/P @ GOTO 40
45 I=I-1 @ R=I @ C=-1
50 P=PRIM(R) @ IF NOT P THEN S=S+C*(N DIV (I*I)) ELSE IF MOD(R,P*P) THEN C=-C @ R=R/P @ GOTO 50
5 5 ~ N E X T ~ I ~
60 S=S-(N DIV 9)-(N DIV 4)+N
65 T=TIME-T @ DISP N;S;SQR(6*N/S);T
```

Execution times are now closer ... no, better (slightly) than Valentin's results :-)

```
N Count Timings (HP-71B)
    12345 7503 7.4s
100000 60794 24s
567890 345237 64s
1000000 607926 87s
```

More results on Emu71/Win, in fast and Authentic modes:

```
N Count PI approx. Timings (Emu71 fast, auth.)
1E7 6079291 3.14158749068 0.3s 5min11s
1E8 60792694 3.14159307180 0.9s 18min8s
1E9 607927124 3.14159259637 3.1s 63min1s
```

```
1E10 6079270942 3.14159267337 11s N/A
1E11 60792710280 3.14159265115 39s N/A
1E12 607927102274 3.14159265250 144s N/A
```

Do we have to stop at 1E12?
No! The computing loop uses numbers from 2 to $\operatorname{SQR}(\mathrm{N})$ which is no problem.
Just the count must be carried carefully, starting from smallest terms, to the highest that can exceed 1E12
Also some operations must be written carefully, for instance replacing IP(N/X) with N DIV X.
This explains the changes in the program above.

Of course, the final count will have only 12 significant digits, but if is correct within a few ULPs as expected, then we can get an approximation of pi with the same accuracy.

Results on Emu71/Win full speed only:

```
N Count PI approx. Timings (Emu71 fast)
```

1E13 6.07927101830E12 3.141592653659 min 27 s
1E14 6.07927101860E13 3.14159265357 39min
1E15 6.07927101854E14 3.14159265359 166min

J-F

24th March, 2023, 14:38

EdS2 8

Posts: 517
Senior Member
Joined: Apr 2014

RE: [VA] SRC \#013 - Pi Day 2023 Special

Bravo!

I'm thinking, on a platform which lacks the very handy PRIM predicate, one might proceed first with a sieve and then lookup into that for the PRIM calls. It will potentially take a lot of storage, and packing the bits will slow down access.

It might be that saving the primes in this way is very similar to Valentin's program which records the Möbius values, although in that case I think we still need an implementation of FPRIM.

Posts: 958
Senior Member
Joined: Feb 2015
Warning Level: 0\%

RE: [VA] SRC \#013 - Pi Day 2023 Special

Hi, J-F Garnier and EdS2,

J-F Garnier Wrote:

So this time we got two solutions from Valentin, plus as often interesting comments and references.

Thanks for your continued appreciation, J-F. I created first solution 1, as doing a sieve was the fastest way to accomplish the goal, but as HP didn't see fit to implement BYTE and/or BOOLEAN arrays in 71 BASIC, like many other high-level languages do, the memory consumption of INTEGER arrays (3 bytes per element) required lots of $R A M$ for large \boldsymbol{N}, and thus I created solution 2, which in the long run gets increasingly slower but has insignificant memory requirements.

J-F Garnier Wrote:

My last solution posted just a few hours before Valentin's final solutions probably didn't catch much attention. Yet I was quite happy with the tricks I used to speed up my code by almost a factor of 2.

Oh yes, it did. I noticed it at once but refrained from replying something outright as I intended to include a version of my solution 1 able to run in puny BASIC dialects without using any of the HP-71 BASIC enhancements provided by the Math and JPC ROMs, as EdS2 requested here for using it on BBC BASIC or other "ordinary BASIC" (his words).

J-F Garnier Wrote:

One trick was to skip the unnecessary evaluation of the Möbius function for all multiples of 4, i.e. one number over 4 or a 25% gain. But this was not enough to beat Valentin's timings, and even more with his last 5% optimization of his

I like the way you never let go until you succeed, and your "tricks" (I'd call them "techniques") are indeed clever and I'm sure interested people will benefit from studying them.

J-F Garnier Wrote:

So here is another attempt, pushing the optimisation further towards speed with just a slightly larger code, but no huge memory requirements. [...]

Ditto. However, your use of PRIM means, as I've said, that in the long run that approach can't beat sieve-based methods, because finding a factor (or ensuring that there's none) for large enough numbers is quite costly.

J-F Garnier Wrote:

Execution times are now closer ... no, better (slightly) than Valentin's results :-) [...] More results on Emu71/Win, in fast and Authentic modes

Congratulations, but I think you mentioned before that your Emu71/Win is running at $\sim 1,500 x$, I quote:
"I estimate a peak ratio of $\boldsymbol{\sim}$ 1500x on my latest Ryzen5 laptop"
while my timings are for a $\sim 976 x$ instance, so it would be proper to take that speed difference into account for accurate comparisons of the Emu71/Win timings.

J-F Garnier Wrote:

Do we have to stop at 1E12? No! [...] Of course, the final count will have only 12 significant digits, but if is correct within a few ULPs as expected, then we can get an approximation of pi with the same accuracy.

Impressive ! ... ® $^{\circ}$ and that last approximation for $\boldsymbol{N}=\mathbf{1 E 1 5}$, namely $\mathbf{3 . 1 4 1 5 9 2 6 5 3 5 9}$, is a sight to behold ! Congratulations, again!

EdS2 Wrote:

I'm thinking, on a platform which lacks the very handy PRIM predicate, one might proceed first with a sieve and then lookup into that for the PRIM calls. [...] It might be that saving the primes in this way is very similar to Valentin's program which records the Möbius values, although in that case I think we still need an implementation of FPRIM.

Here you are, the promised code for your first "related challenge", to run my solution 1 for the HP-71B but using an "unaugmented [sic] 71B, or a similarly ordinary Basic" (your words):

```
EDS2 10 lines, 389 bytes
    DESTROY ALL @ INPUT T @ SETTIME O @ N=IP(SQR(T)) @ GOSUB 70
    INTEGER M(N) @ FOR K=1 TO N @ M(K)=1 @ NEXT K @ L=1 @ P=2
*30 S=P*P @ FOR K=S TO N STEP S @ M(K)=0 @ NEXT K @ FOR K=P TO N STEP P
40 M(K)=-M(K) @ NEXT K @ L=L+1 @ IF L<=W THEN P=F(L) @ GOTO 30
50 S=T @ FOR K=2 TO N @ IF M(K) THEN S=S+M(K)*(T DIV (K*K))
60 NEXT K @ R=SQR(6*T/S) @ DISP T;S;R;ABS(PI-R);TIME @ END
*70 H=CEIL (N/2) @ INTEGER F(H)@ ©(1)=1 @ FOR S=2 TO (SQR(2*H)+1)/2 @ IF F(S) THEN 90
    80 FOR K=2*S*(S-1)+1 TO H STEP 2*S-1 @ F(K)=1 @ NEXT K
*90 NEXT S @ W=1 @ F(1)=2 @ FOR K=1 TO H @ IF NOT F(K) THEN W=W+1 @ F(W)=2*K-1
100 NEXT K @ INTEGER F(W) @ RETURN
```


Description:

- Lines $\mathbf{1 0}$ to $\mathbf{6 0}$ are essentially the same as in my solution $\mathbf{1}$ for the HP-71B, with changes (described below in Notes) to adapt it to run in plain-vanilla BASIC dialects. In line 10, before beginning the sieve to compute the Möbius function values en masse, the subroutine beginning at line 70 is first called to obtain at once all prime numbers required
- Lines $\mathbf{7 0}$ to 100, nonexistent in solution 1, are now necessary to implement the functionality that the FPRIM keyword allowed there. This subroutine (called just once, before performing the Möbius sieve) computes and stores in integer array \mathbf{F} all prime numbers required by performing yet another sieve. Once completed, the prime numbers identified are placed consecutively in array \mathbf{F}, which is then redimensioned to reclaim memory, thus leaving more available to later dimension integer array \mathbf{M} for the second sieve.
- As was the case with the Möbius sieve, the new prime sieve doesn't use any factoring, multiplications or divisions, for maximum speed. As will be seen in the timings below, this adapted program takes only $\mathbf{2 4 \%}$ longer than the original one, which used the assembler keyword FPRIM, so in this battle between my BASIC code vs. JPC Assembler code, I declare myself the winner !

Notes:

This is based on my solution 1 for the HP-71B but with the following changes:

- I've replaced MAT M=CON, WHILE .. END WHILE, FPRIM and RES by functionally equivalent code, and I've deleted USING "image". No keywords from the Math or JPC ROMs remain. The loop at lines 30-40 can be reimplemented using a WHILE .. WEND construct, if available.
- I'm not sure if DIV (integer division) exists in BBC BASIC or other "ordinary" dialects. If it doesn't, A DIV B can be replaced by INT(A/B).
- Same thing with $\mathbf{H}=\mathbf{C E I L}(\mathbf{N} / \mathbf{2})$ at line 70. If CEIL isn't available, it will need to be replaced by trivial equivalent code.
- For convenience while running and timing the code, I've left in the above code the HP-71B BASIC keywords DESTROY ALL, SETTIME 0 and TIME, which should be either deleted or replaced by equivalent code in other BASIC dialects.
- The integer array \mathbf{F} is first dimensioned in line 70 as INTEGER $\mathbf{F}(\mathbf{H})$, with a variable number of elements \mathbf{H}. In BASIC dialects which do not admit dimensioning arrays with a variable number of elements given by an expression, \mathbf{F} will probably need to be dimensioned to the fixed maximum number of elements to use. Same thing happens at line 20 INTEGER M(N).
- Also, the same array \mathbf{F} is later redimensioned in line 100 as INTEGER $\mathbf{F}(\mathbf{W})$, reducing its size (because \mathbf{W} is always $\mathbf{<} \mathbf{H}$) to reclaim memory. If the plain-vanilla dialect can't redimension arrays, or if it can but it doesn't keep intact the unaffected elements (initializes or destroys the whole array's contents,) then this redimensioning will not be possible and memory won't be reclaimed, which will limit the maximum argument \mathbf{N} being input to the program.

The memory savings by redimensioning can be huge. For instance, for $\mathbf{N}=100,000,000$, redimensioning \mathbf{F} reduces it from 5,000 elements to just 1,229 elements.

- As it stands now, the program recomputes the array of prime numbers each time it's run. If there's a RAM disk available or other sufficiently fast way to store and retrieve the array, it could be computed to its maximum size and stored just once, to be retrieved in whole or in part when the program is executed afterwards. This would reduce the running time considerably, depending on the retrieval speed vs. the computation speed.

Results:

Upon running the program with the following arguments on a physical/virtual HP-71B, we get these results and timings:

N	Count	I approx	\|Error ${ }^{\text {l }}$	$\begin{aligned} & \text { go71b } \\ & \text { @128x } \end{aligned}$	$\begin{gathered} \text { Emu } 71 / \text { Win } \\ \text { ©976x } \end{gathered}$	$\begin{gathered} \text { Physical } \\ H P-71 B \end{gathered}$
12345	7503	3.14198204634	0.00038939275	0.12 "	0.02"	15"
100000	60794	3.14155932716	0.00003332643	$0.34 "$	0.04 "	44"
567890	345237	3.14158683822	0.00000581537	0.83"	0.11"	1' 46 "
1000000	607926	3.14159550063	0.00000284704	1.11"	$0.15{ }^{\prime \prime}$	2' 22 "
10000000	6079291	3.14158749068	0.00000516291	3.61 "	$0.47{ }^{\prime \prime}$	7' 42"
25000000	15198180	3.14159239999	0.00000025360	5.77"	$0.76{ }^{\prime \prime}$	12' 19"
33000000	20061593	3.14159276017	0.00000010658	6.65 "	$0.87{ }^{\prime \prime}$	14' 11"
1E8	60792694	3.14159307180	0.00000041821	11.71"	1.54"	24'59"
1E9	607927124	3.14159259637	0.00000005722	38.00"	4.98"	1h 21'

That's all. Hope it's useful, or at least enjoyable. Tell me how it goes when running it on your beloved BBC BASIC.

v.

25th March, 2023, 20:02 (This post was last modified: 29th March, 2023 04:17 by DavidM.)

DavidM 8
 Senior Member

Using the Möbius-based algorithm already presented by 2old2randr and Valentin above, I put together the following SysRPL implementation to see how it would perform on a real 50 g . I was curious as to how a pure SysRPL implementation would compare to the hybrid version already posted by 2old2randr.

This particular implementation makes use of a customized version of the Möbius function that Gerald H created. Instead of calling the function code as a subroutine, it is simply executed inline in the loop that accumulates the final count. I also wanted the result as an approximate number instead of an exact integer in order to reduce the need for subsequent conversions. Otherwise, it's the same method as Gerald's original Möbius function.

The rest of the code is fairly standard stack-based computations. As with any SysRPL implementation, there's an argument check at the beginning. This is followed by the sum-loop, and then the final computation of SQRT(6*N/Count):

Edit: this code has been updated to correct an issue with the computation of Count (identified below in this thread)
! NO CODE
! RPL
: :
CK1NOLASTWD

CK\&DISPATCH1

real : :
\%1 OVER \% caseSIZEERR (N must be a positive integer <= [1E12-1])

DUP \%IP OVER \%<> caseSIZEERR
DUP \% 9.99999999999E11 \% caseSIZEERR

```
        DUP %SQRT %IP>#
```

(maxloop: IP[SQRT[N]])
\%1
\% 0
ROT ZERO_DO
(initial i value)
(initial S subtotal)
OVERDUP $\% 1 \%=$?SKIP : :
(for i $=0$ to [maxloop-1])
(skip mu[i] if i=1)
FPTR2 ^R>Z
(convert i to zint for factoring)
FPTR2 ^MZSQFF
(obtain factor meta)
\# 2 /
(convert meta size to pair count)
\%1 SWAP
(seed mu[] result with 1)
ZERO_DO
(Gerald's mu[] method:)
ROTDROPSWAP
(check each factor magnitude,)
\%1 \%= ITE \%CHS DROP\%0_
(alter current mu[] result for given value)
(next factor)
(end of mu[])
(SL2: N, SL1: i)
2OVER
DUP \%* (i^2)
2DUP \%MOD ($\mathrm{N} \mathrm{MOD} \mathrm{i} \mathrm{\wedge 2)}$
ROTSWAP \%- $\quad\left(Q=N-\left[N M O D i^{\wedge} 2\right]\right)$
$\operatorname{SWAP} \% 1 \quad\left(\mathrm{Q}=\mathrm{Q} / \mathrm{i}^{\wedge} 2\right)$
\%*
(Q * mu[i])
\% + SWAP
(increment/decrement S, swap with i)
\% $1+$ SWAP
LOOP
SWAPDROPDUP
(increment i, swap with S)
(next i)
(drop i, dup S)
\%6 4ROLL \%*
($6 * N$)
SWAP \% $\quad(6 * N / S)$
\%SQRT (SQRT[6*N/S])
;
;
©
Size: 182.5 bytes
CRC: \#79C1h
Here's the results of similar inputs to those posted by others. Except where noted, the runtimes listed are averages of 3 runs:

N	Count	Approximation	lerror\|	Physical $\mathbf{5 0 g}$ Runtime
\mathbf{N}	7	2.92770021885	0.21389243474	$00: 00: 00.05$
12,345	7,503	3.14198204634	0.00038939275	$00: 00: 02.36$
100,000	60,794	3.14155932716	0.00003332643	$00: 00: 06.65$
567,890	345,237	3.14158683822	0.00000581537	$00: 00: 15.95$
$1,000,000$	607,926	3.14159550063	0.00000284704	$00: 00: 21.22$
$10,000,000$	$6,079,291$	3.14158749068	0.00000516291	$00: 01: 09.68$
$25,000,000$	$15,198,180$	3.14159239999	0.00000025360	$00: 01: 52.44$
$33,000,000$	$20,061,593$	3.14159276017	0.00000010658	$00: 02: 09.21$
1 EP	$60,792,694$	3.14159307180	0.00000041821	$00: 03: 51.44$
$1 \mathrm{E9}$	$607,927,124$	3.14159259637	0.00000005722	$00: 12: 55.88$

$$
\begin{array}{rrrrrr}
1 \mathrm{E} 10 & 6,079,270,942 & 3.14159267337 & 0.00000001978 & 00: 44: 36.81 \\
1 \mathrm{E} 11 & 60,792,710,280 & 3.14159265115 & 0.00000000244 & 02: 39: 38.69 \\
1 \mathrm{E} 12-1 & 607,927,102,274 & 3.14159265250 & 0.00000000109 & 10: 03: 57.12 \text { * }
\end{array}
$$

* Time shown is for a single run

2old2randr 8

Posts: 42
Junior Member
Joined: Jan 2018

RE: [VA] SRC \#013 - Pi Day 2023 Special

Thank you, David for that very nicely annotated (and indented) code. I am learning Sys RPL and example programs are very helpful.

A couple of questions regarding your program - what are the two lines (!NO CODE and !RPL) at the beginning of the program for? Secondly, what is the meaning of the underscore in DROP\%0_?

Thanks
Sudhir

EMAIL PM Q FIND
 2. REPORT

26th March, 2023, 05:37

DavidM B

Posts: 918
Senior Member
Joined: Dec 2013
RE: [VA] SRC \#013 - Pi Day 2023 Special

2old2randr Wrote:

(26th March, 2023 03:31)
...what are the two lines (!NO CODE and !RPL) at the beginning of the program for? Secondly, what is the meaning of the underscore in DROP\%0_?
"!NO CODE" and "!RPL" are directives for the built-in MASD compiler that designate the appropriate modes for translation and output. They are specific to that particular compiler, and may not be needed if you set system flag -92. Other compilers (such as the HP Developer Tools) may not recognize them at all.

The underscore suffix is a convention used by the HP designers to indicate that the opcode is for an entry point that is not official, but is in a safe area and can be used in programs as needed. The underscore is actually part of the opcode's name, and doesn't have any special meaning for the compiler. You may also see certain SysRPL opcodes written within parentheses, which is another way to designate the same thing. You just need to know what your particular compiler is expecting.

PM Q, FIND

Q QUOTE R REPORT

27th March, 2023, 16:02

EdS2 8

Posts: 517
Senior Member
Joined: Apr 2014

RE: [VA] SRC \#013 - Pi Day 2023 Special

Thanks Valentin, David, J-F. I'm hoping to be able to apply some brain power to this and will post if I get something working. If I don't post, it's because I haven't marshalled the effort.

DavidM 8

Posts: 918
Joined: Dec 2013

RE: [VA] SRC \#013 - Pi Day 2023 Special

I hadn't noticed that the final Count value I listed in the table in post \#22 was a bit off until Valentin sent me a note about it. We both assumed a typo, but it turns out not to be. The program I posted definitely produces the Count value specified for an input of 999,999,999,999.

While it certainly feels like some sort of rounding discrepancy, I haven't yet found the spot where things break down. I'm still working on it as time permits, but I wanted to let everybody know that it appears there's still another "puzzle in the puzzle". At least in the version I posted. \because

FIND

RE: [VA] SRC \#013-Pi Day 2023 Special

DavidM Wrote:

(27th March, 2023 16:28)
I hadn't noticed that the final Count value I listed in the table in post \#22 was a bit off until Valentin sent me a note about it. We both assumed a typo, but it turns out not to be. The program I posted definitely produces the Count value specified for an input of $999,999,999,999$.

While it certainly feels like some sort of rounding discrepancy, I haven't yet found the spot where things break down. I'm still working on it as time permits, but I wanted to let everybody know that it appears there's still another "puzzle in the puzzle". At least in the version I posted.

I didn't notice this discrepancy !
However ... running Valentin's 2nd solution also returns the same wrong value:

```
1 DESTROY ALL @ INPUT T @ SETTIME 0 @ U=-1 @ S=T @ FOR K=2 TO SQR(T) @ N=K @ F=1
2 D=PRIM(N) @ IF NOT D THEN S=S+U^F*IP(T/(K*K)) ELSE IF MOD(N,D*D) THEN F=F+1 @ N=N/D @ GOTO 2
3 NEXT K @ DISP USING "2(3DC3DC3DC3D,2X),2(Z.8D,X),5DZ.2D";T,S,SQR(6*T/S),ABS(PI-RES),TIME
>RUN
?1E12-1
999,999,999,999 607,927,102,272 3.14159265 0.00000000 178.90
```

J-F

Valentin Albillo 8

Posts: 958
Joined: Feb 2015
Warning Level: 0\%

RE: [VA] SRC \#013 - Pi Day 2023 Special

Hi, J-F and DavidM,

J-F Garnier Wrote:
(27th March, 2023 17:48)

DavidM Wrote:

(27th March, 2023 16:28)
I hadn't noticed that the final Count value I listed in the table in post \#22 was a bit off until Valentin sent me a note about it. We both assumed a typo, but it turns out not to be. The program I posted definitely produces the Count value specified for an input of 999,999,999,999 [...]

I didn't notice this discrepancy !
However ... running Valentin's 2nd solution also returns the same wrong value:
1 DESTROY ALL @ INPUT T @ SETTIME 0 @ $\mathrm{U}=-1$ @ $\mathrm{S}=\mathrm{T}$ @ FOR $\mathrm{K}=2 \mathrm{TO} \mathrm{SQR}(\mathrm{T})$ @ $\mathrm{N}=\mathrm{K}$ @ $\mathrm{F}=1$
2 D=PRIM(N) @ IF NOT D THEN S=S+U^F*IP(T/(K*K)) ELSE IF MOD (N, D*D) THEN F=F+1 @ N=N/D @ GOTO 2
3 NEXT K @ DISP USING "2(3DC3DC3DC3D,2X),2(Z.8D,X),5DZ.2D";T,S,SQR(6*T/S),ABS(PI-RES),TIME
>RUN
?1E12-1
999,999,999,999 607,927,102,272 3.14159265 0.00000000 178.90

Shocking! I didn't notice at the time I posted my two original solutions because I never saw the wrong count, just the correct one. A little trip down the memory lane reveals what happened and why I didn't saw it:

When I ran my solution 2 for various \boldsymbol{N}, the last one I entered at the input prompt was 1E12, exactly, without the " -1" used to make it the largest 12-digit integer 999,999,999,999. The program merrily run and output this:
>RUN
? 1 E 12
WRN L3:IMAGE Ovfl
,,***,*** 607,927,102,274 [...]
and I thought, "Gosh, the image 3DC3DC3DC3D caters only for $\mathbf{1 2}$ digits and $\mathbf{1 E 1 2}=\mathbf{1 , 0 0 0}, 000,000,000 ~ w h i c h ~ h a s ~$
$\mathbf{1 3}$, thus the image overflow. But the output count, $\mathbf{6 0 7 , 9 2 7 , 1 0 2 , 2 7 4 , ~ i s ~ f u l l y ~ c o r r e c t ~ a s ~ p e r ~ t a b l e s , ~ s o ~ n o ~ p r o b l e m . " ~}$
Thus, instead of changing the already sizeable image, and as Moebius(1E12)=0 (because $\mathbf{1 E 1 2}$ is divisible my many squares 4 , for instance,) it's adding nothing to the tally, so the count for 1E12-1 must be the same value,
$\mathbf{6 0 7}, 927,102,274$, and thus I simply posted the input as $\mathbf{1 E 1 2 - 1}$ to avoid the ungainly IMAGE overflow, fully expecting that the program would produce the exact same value as the one computed for $\mathbf{1 E 1 2}$ proper so I didn't bother to check it out by actually running it again.

Alas, as J-F discovered, it does not, possibly because of some rounding error, but the solution is quite simple because the only operations which can result in such errors are the square root (which is innocent) and divisions. A little examination reveals that the culprit is $\mathbf{I P}\left(\mathbf{T} /\left(\mathbf{K}^{*} \mathbf{K}\right)\right.$) at line 2, and changing it to ($\mathbf{T} \mathbf{D I V}(\mathbf{K} * \mathbf{K})$), like this:

2 D=PRIM(N) @ IF NOT D THEN S=S+U^F* (T DIV (K*K)) ELSE IF MOD(N,D*D) THEN F=F+1 @ N=N/D @ GOTO 2
completely solves the problem (177 bytes):

```
1 DESTROY ALL @ INPUT T @ SETTIME 0 @ U=-1 @ S=T @ FOR K=2 TO SQR(T) @ N=K @ F=1
2 D=PRIM(N) @ IF NOT D THEN S=S+U^F*(T DIV (K*K)) ELSE IF MOD(N,D*D) THEN F=F+1 @ N=N/D @ GOTO 2
3 NEXT K @ DISP USING "2(3DC3DC3DC3D,2X),2(Z.8D,X),5DZ.2D";T,S,SQR(6*T/S),ABS (PI-RES),TIME
```

>RUN
?1E12-1
999,999,999,999 607,927,102,274 [...]

Probably something like this may be affecting DavidM's program and the solution might possibly be along the same lines.

Best regards.
V.
\square PM www O, FIND

28th March, 2023, 17:10 (This post was last modified: 29th March, 2023 04:22 by DavidM.)

DavidM B

Posts: 918
Senior Member
Joined: Dec 2013

RE: [VA] SRC \#013 - Pi Day 2023 Special

Valentin Albillo Wrote:

(27th March, 2023 21:46)
Probably something like this may be affecting DavidM's program and the solution might possibly be along the same lines.

That was indeed the problem. I've updated the SysRPL code in post \#22 to reflect a fix for the issue.
Unfortunately there is no built-in SysRPL operator for integer division with real/approximate arguments, so I couldn't use the same approach that Valentin was able to use.

I could have opted to refactor the code using ZINTs (exact integers) so as to use the supported integer division operator for those, but that would reduce the performance gains that I was seeking. A simple test showed about a 10% runtime hit going that route.

While there's no supported integer division operator that I could tap into, there is a \%MOD operator that allowed me to "back into" the integer quotient by subtracting the remainder from N prior to dividing by $\mathrm{i} \wedge 2$. Although somewhat convoluted, it works in this situation and only cost about a $2-3 \%$ penalty in runtime.

I'm still working on documenting the new runtimes, and will update post \#22 when I've got the corrected data.
Edit: Runtimes have now been updated as well as the program code.

Valentin Albillo 8

Posts: 958
Joined: Feb 2015
Senior Member
Warning Level: 0\%

RE: [VA] SRC \#013 - Pi Day 2023 Special

Hi, all,

Valentin Albillo Wrote:

Alas, as J-F discovered, it does not, possibly because of some rounding error, but the solution is quite simple because the only operations which can result in such errors are the square root (which is innocent) and divisions. A little examination reveals that the culprit is $\mathbf{I P}(\mathbf{T} /(\mathbf{K} * \mathbf{K})$) at line 2, and changing it to (T DIV (K*K)), like this: [...]

Indeed IP(T/(K*K)) and T DIV (K*K), which would appear at first sight to be equivalent, do really differ at times (though very rarely and for large values of \mathbf{T}, it seems,) when the former's rounding does not match the latter's truncation.

A trivial program I wrote (relatively) quickly finds all mismatches for various very large integer \mathbf{T} and for \mathbf{K} from 2 to $I P(\sqrt{ } T)$ (i.e. \sim one million possible cases for the first eight values of \mathbf{T} listed):

T	\# Mismatches	K
999,999, 999,999	31 instances	2, 5, 8, 16, 20,
999,999, 999,998	19 instances	2, 3, 8, 20, 25,
999, 999, 999 , 997	12 instances	3, 8, 25, 80, ...
999,999, 999,996	3 instances	3, 3125, 31250,
999,999,999,995	3 instances	2, 3, 254
999,999,999,994	1 instance	254
999,999,999,993	1 instance	254
999,999,999,992	0 instances	-
99,999, 999,999	0 instances	-

As you can see, for $\boldsymbol{T}=999,999,999,999$ there are 31 different instances (in about a million) where $I P(T /(K * K)$) differs from T DIV $(K * K)$, for \boldsymbol{K} ranging from 1 to $I P(\sqrt{ } T)$. The instances begin at $\boldsymbol{K}=\mathbf{2}(249,999,999,999$ vs. $250,000,000,000$, respectively) and end at $\boldsymbol{K}=\mathbf{5 0 0}, \mathbf{0 0 0}$ (3 vs. 4, respectively).

Doing the same with $\boldsymbol{T}=\mathbf{9 9 9}, \mathbf{9 9 9}, 999,998$, there's just 19 instances reported instead of 31 , and with $\boldsymbol{T}=$
999,999,999,997 just 12. By the time \boldsymbol{T} equals $999,999,999,995$, a mere 3 faulty instances remain (namely for $K=2$, 3 and 254), then 999,999,999,994 and 999,999,999,993 have just the one mismatch (in a million !) and for 999,999,999,992 and below there seems to be none.

Also, as expected, running this small program for input values with less than 12 digits, say $\boldsymbol{T}=\mathbf{9 9}, \mathbf{9 9 9}, \mathbf{9 9 9}, \mathbf{9 9 9}$ instead, i.e. 1E11-1, no instances of mismatches appear at all, and probably the same happens for all smaller \boldsymbol{T}.

V.

PM WWW Q FIND

EdS2

Senior Member

RE: [VA] SRC \#013 - Pi Day 2023 Special

Right then, after a false start yesterday afternoon, resulting in a need for aspirin and a nap, I've managed to do a bit of coding. I chose J-F's simplest (first) submission as a template, and wanted to make use of sieve code from a previous discussion on Stardot. After a great deal of uglification and debugging, and using some more of J-F's ideas, I have the following (can run it here):

100 REM based on SRC13 by J-F Garnier (first attempt)
110 DATA 1000,12345,1E5,1E6
120 REPEAT: READ N $\%$
$130 \mathrm{~T} \%=\mathrm{TIME}$
$140 \mathrm{~L} \%=\operatorname{SQR}(\mathrm{N} \%)$
150 REM start with a sieve of smallest prime factors
$160 \mathrm{Z} \%=\mathrm{SQR}(\mathrm{L} \%)$
170 DIM V\% L\%+5
180 FORI $\%=1 \mathrm{TOL} \%+1 \mathrm{STEP} 4: \mathrm{V} \%$! $\mathrm{I} \%=0: \mathrm{NEXT}$
$190 \mathrm{P} \%=2$:REPEATFORI $\%=\mathrm{P} \% * \mathrm{P} \% \mathrm{TOL} \% \mathrm{STEPP} \%: I F V \%$? I \% ELSEV $\%$? $\mathrm{I} \%=\mathrm{P} \%$
200 NEXT: REPEATP $\%=P \%+1$:UNTILV $\%$? $\mathrm{P} \%=0$
210 UNTILP $\%$ Z $\%$:IF P\%>255 STOP
220 REM now the counting of the squarefree
$230 \mathrm{~S} \%=\mathrm{N} \%:$ FOR $\mathrm{I} \%=2 \mathrm{TO} \mathrm{L} \%$
$240 \mathrm{R} \%=\mathrm{I} \%: \mathrm{C} \%=-1: \mathrm{Q} \%=1$
$250 \mathrm{P} \%=\mathrm{V} \%$? R \% : $\operatorname{IFP} \%$ ELSEP $\%=\mathrm{R} \%$
260 IFP\%=Q\%M\%=OELSEIFP\%=R\%M\%=C\%ELSEC\%=-C\%:R\%=R\%DIVP\%:Q\%=P\%:GOTO250
$270 \mathrm{~S} \%=\mathrm{S} \%+\mathrm{M} \%$ * $(\mathrm{N} \% \operatorname{DIV}(\mathrm{I} \% * I \%)): I \%=I \%+1$

```
280 R%=I%:C%=-1:Q%=1
290 P%=V%?R%:IFP%ELSEP%=R%
300 IFP%=Q%M%=0ELSEIFP%=R%M%=C%ELSEC%=-C%:R%=R%DIVP%:Q%=P%:GOTO290
310 S%=S%+M%*(N%DIV(I%*I%)):I%=I%+2
320 R%=I%:C%=-1:Q%=1
330 P%=V%?R%:IFP%ELSEP%=R%
340 IFP%=Q%M%=OELSEIFP%=R%M%=C%ELSEC%=-C%:R%=R%DIVP%:Q%=P%:GOTO330
350 S%=S%+M%*(N%DIV (I%*I%))
3 6 0 ~ N E X T
370 T%=TIME-T%
380 PRINT N%" "S%" "T%/100"s"
390 U.FA.:END
```

The timings and counts are as follows:

1000	608	0.33 s
12345	7503	1.20 s
100000	60794	3.59 s
567890	345237	8.98 s
1000000	607926	12.07 s

I was able to push this as far as 7.8 E 8 with result 474183174 , which I can't readily check, using a faster unrealistic emulation mode. (Can't get Wolfram to give me large results - any tips?)

Other than that, all the above I ran in accurate emulation of a BBC Micro, a 2 MHz 6502 machine with 32 k RAM and a rather good 16k Basic. There are models with more available RAM and faster CPUs and I should be able to get to 1 E9 one way or another, and probably higher.

The only peculiarity of BBC Basic which you might need to understand is the use of DIM, ? and ! to allocate and directly access RAM. Fairly obviously, the use of the \% sign is to denote integer variables.

Thanks to everyone for the materials and discussion! And to Valentin for the challenge. I've posted over on Stardot too, of course.

I note that some vintage HP desktops offer a Basic, it might be interesting to see what they can do.

Valentin Albillo 8

Posts: 958
Joined: Feb 2015
Warning Level: 0\%

RE: [VA] SRC \#013 - Pi Day 2023 Special

Hi, all,

To end this thread, there's the subject of finding values of \boldsymbol{N} which result in an approximation to π much closer than what would be statistically expected. Of course, the larger \boldsymbol{N}, the better the appoximation on the long run, but perhaps there are values of \boldsymbol{N} which defy the odds and result in unexpectedly close approximations.

To settle the matter, this 179-byte $\mathbf{4}$-liner finds them up to a given maximum \boldsymbol{N} very, very quickly, listing all successive record-breakers:

```
DESTROY ALL @ INPUT N @ SETTIME O @ INTEGER M(N) @ MAT M=CON @ P=2 @ WHILE P<=N @ S=P*P
FOR K=S TO N STEP S @ M(K)=0 @ NEXT K @ P=FPRIM(P+1) @ END WHILE @ V=10 @ S=7
FOR T=11 TO N @ S=S+(M(T)#0) @ X=SQR(6*T/S) @ Y=ABS (PI-X) @ IF Y<V THEN V=Y @ DISP T;X;V
NEXT T @ DISP "OK";TIME
```

Let's find all record-breakers for \boldsymbol{N} up to $\mathbf{3 0 , 0 0 0}$ (requires $\sim 90 \mathrm{~Kb}$ of $R A M$):

```
>RUN -> ? 30000
```

N Pi Approx. $\quad \mid$ Error \mid
(smallest values, which result in irrelevant approximations, not listed)
$28 \quad 3.14362099197 \quad 0.00202833838$
$153 \quad 3.14180962853 \quad 0.00021697494$
$426 \quad 3.14145282771 \quad 0.00013982588$

862	3.14169206124	0.00009940765
931	3.14153751379	0.00005513980
936	3.14164722334	0.00005456975
982	3.14155164428	0.00004100931
1033	3.14156437967	0.00002827392
1061	3.14161860223	0.00002594864
1135	3.14158641730	0.00000623629
1186	3.14159601478	0.00000336119
2094	3.14159185312	0.00000080047
5147	3.14159305181	0.00000039822
5374	3.14159277156	0.00000011797
7241	3.14159270516	0.00000005157
14709	3.14159260812	0.00000004547
25684	3.14159262180	0.00000003179

OK timing (go71b: 23.37", Emu71/Win: 3.06", physical HP-71B: 49' 51")
Adding up more $R A M$ to a virtual/physical HP-71B, we can go further, say up to $\boldsymbol{N}=\mathbf{1 0 0 , 0 0 0}$ using $\sim 300 \mathrm{~Kb}$. We obtain the following additional record-breakers:

65623	3.14159266166	0.00000000807
67490	3.14159265758	0.00000000399
89440	3.14159265330	0.00000000029

The above list of record-breakers would seem to end the discussion, but there's something which doesn't look good, the fact that there are several series of them which feature very close \boldsymbol{N} and errors, such as these:

```
931 3.14153751379 0.00005513980
936 3.14164722334 0.00005456975
982 3.14155164428 0.00004100931
```

looking almost redundant, as they're not that different.
It would seem preferable to find and list only those record-breakers which are a significant improvement over their predecessors, where "significant improvement" obeys some suitable criterium, and this 6-liner implements just that:

```
1 DESTROY ALL @ INPUT N @ SETTIME O @ INTEGER M(N) @ MAT M=CON @ P=2 @ WHILE P<=N @ S=P*P
FOR K=S TO N STEP S @ \(M(K)=0\) @ NEXT K @ P=FPRIM (P+1) @ END WHILE @ U=1 @ V=10 @ \(Q=1\) @ \(S=7\)
FOR T=11 TO N @ \(S=S+(M(T) \# 0) @ X=S Q R(6 * T / S)\) @ \(Y=A B S(P I-X)\) @ IF Y>=V THEN 6
\(W=T / Q\) @ \(Z=V / Y\) @ \(H=(Z-1) /(W-1)\) @ IF H<3 THEN 6
\(Q=T\) @ V=Y @ DISP T; \(X\);V;FNR (Z, 3) ; FNR (W, 3) ; FNR (H, 3)
NEXT T @ DISP "OK";TIME @ DEF FNR (N,D)=IROUND (10^D*N)/10^D
>RUN -> ? 30000
```

N	Pi Approx.	\| Error ${ }^{\text {l }}$	Epre/E	N/Npre	Merit
(smallest values, which result in irrelevant approximations, not listed)					
1135	3.14158641730	0.00000623629	325.248	40.536	8.201
1186	3.14159601478	0.00000336119	1.855	1.045	19.036
2094	3.14159185312	0.00000080047	4.199	1.766	4.178
5374	3.14159277156	0.00000011797	6.785	2.566	3.693
7241	3.14159270516	0.00000005157	2.288	1.347	3.706

OK timing (go71b: 25.4", Emu71/Win: 3.33", physical HP-71B: 54'11")
Again, using more $R A M$ we can search up to, say, $\boldsymbol{N}=\mathbf{1 0 0}, \mathbf{0 0 0}$ and we get two more:

67490	3.14159265758	0.00000000399	2.023	1.028	35.942
89440	3.14159265330	0.00000000029	13.759	1.325	39.229

Why do we exclude, e.g. $\mathbf{5 , 1 4 7}$ from the list ? Because $\mathbf{5 , 1 4 7}$'s error is $\mathbf{2 . 0 1 0 x}$ smaller than its predecessor's, $\mathbf{2 , 0 9 4}$, but at the cost of $\mathbf{2 . 4 5 8 x}$ larger \boldsymbol{N}, so it's no real improvement over $\mathbf{2 , 0 9 4}$ and doesn't really pay off having to waste so much more time for such a meager improvement. Thus, its merit factor is too low, doesn't meet the suitability criterium and is excluded from the list; these are the relevant numbers:

```
2094 3.14159185312 0.00000080047 4.199 1.766 4.178
5147 3.14159305181 0.00000039822 \underline{2.010 亿.458 首.693}
```

and the same goes for all other omitted values. Only the ones which result in a marked improvement as per the criterium are deemed worthy to be listed.

Finally, we can do the search for \boldsymbol{N} much greater than 100,000, up to $\mathbf{1 , 5 0 0 , 0 0 0}$ and beyond by using boolean operators
and variables and I've written such a version of this program implementing them, but that's left to the reader as an exercise...

Thanks to all of you who participated, much appreciated and I hope you enjoyed it all.
v.

Valentin Albillo 8

Posts: 958
Senior Member

RE: [VA] SRC \#013 - Pi Day 2023 Special

Hi again!

I thought I was done with this thread for good but while converting it to a PDF document for uploading it to my HP site's HP Calculator Challenges section, I realized there was a bit of unfinished business which had eluded me so far.

Namely, I said in Post \#15 the following, I quote:
"As for the Möbius function $\{\mu(N)$ henceforth\}, it's a very important number-theoretical function which is easily computed in various ways, like this simple HP-71B user-defined function FNM (which should be placed at the end of any program using it): \{requires the JPC ROM\}

```
1 DEF FNM(N) @ IF N=1 THEN FNM=1 @ END ELSE F=1
2 D=PRIM(N) @ IF NOT D THEN FNM=(-1)^F ELSE IF MOD(N,D*D) THEN F=F+1 @ N=N/D @ GOTO 2
>FOR N=96673 TO 96686 @ FNM(N); @ NEXT N @@ \ 1 1 0 0 0 0 0 0 1 1 1 0 -1 -1 [...]
```

[... Good and Churchhouse said ...] 'Thus the Möbius sequence contains arbitrarily long runs of zeros, but these long runs presumably occur extremely rarely.'

I showed above such a run of zeros from $N=96675$ to 96680 , six consecutive zeros in all. It would make for an interesting challenge to locate longer runs."

So, here I address this remaining sub-challenge by creating an $H P-71 B$ program to find the first values of \boldsymbol{N} which are the start of a run of $1,2,3, \ldots$, consecutive zeros of $\mu(N)$. Specifically, this 169 -byte 4 -liner finds them up to a given maximum \boldsymbol{N} very quickly: \{requires the JPC ROM\}

```
1 DESTROY ALL @ INPUT N @ SETTIME 0 @ INTEGER M(N) @ P=2 @ WHILE P<=N @ S=P*P
2 FOR K=S TO N STEP S @ M(K)=1 @ NEXT K @ P=FPRIM(P+1) @ END WHILE @ Z=0 @ U=0
3 FOR K=1 TO N @ IF M(K) THEN Z=Z+1 ELSE IF Z>U THEN U=Z @ DISP U;K-Z @ Z=0 ELSE Z=0
4 NEXT K @ DISP "OK";TIME
```

- Lines 1-2 perform the initialization and identify the zeros of $\boldsymbol{\mu}(\boldsymbol{N})$, while line 3 contains all the logic to locate the start of the first run of $1,2,3, \ldots$, consecutive zeros.

Let's find the first initial \boldsymbol{N} for $\boldsymbol{L}=1,2,3, \ldots$, consecutive zeros for \boldsymbol{N} up to $\mathbf{2 5 , 0 0 0}$ (requires $\sim 75 K b$ of $R A M$):

OK timing (go71b: 10.60", Emu71/Win: 1.39", physical HP-71B: 22' 37")
This means that e.g. for the case $\boldsymbol{L}=5$ we have that $\mu(844), \mu(845), \mu(846), \mu(847)$ and $\mu(848)$ are all zero, thus the first run of 5 consecutive zeros of $\mu(N)$ starts at $\boldsymbol{N}=844$. This also means that all five numbers in the run are divisible by some square, namely:

$$
844=2^{2} \times 211 ; 845=5 \times 13^{2} ; 846=2 \times 3^{2} \times 47 ; 847=7 \times 11^{2} ; 848=2^{4} \times 53
$$

Adding up more $R A M$ and/or using boolean arrays and operations we'd be able to extend the search up to $\boldsymbol{N}=$ $\mathbf{1 , 2 0 0}, \mathbf{0 0 0}$, say, which would allow us to find two additional runs of lengths $\mathbf{7}$ and $\mathbf{8}$, respectively:

```
7 217070
8 1092747
```

Longer runs would require much more complex programming and longer execution times.

v.

PM Foww PaIND

View a Printable Version
Send this Thread to a Friend
Subscribe to this thread

User(s) browsing this thread: Valentin Albillo*

Contact Us | The Museum of HP Calculators \| Return to Top \| Return to Content | Lite (Archive) Mode | RSS Syndication

Forum software: MyBB, © 2002-2023 MyBB Group.

